Recombinant human prion protein mutants huPrP D178N/M129 (FFI) and huPrP+9OR (fCJD) reveal proteinase K resistance.

نویسندگان

  • Sabine Gauczynski
  • Susanne Krasemann
  • Walter Bodemer
  • Stefan Weiss
چکیده

The Semliki-Forest virus (SFV) system was used to overexpress human wild-type and mutant prion proteins as well as FLAG-tagged human and bovine PrP in mammalian cells. The application of recombinant SFV vectors allowed a high-level production of highly glycosylated prion proteins with a molecular weight ranging from 25 to 30 kDa for recombinant wild-type human PrP and from 26 to 32 kDa for wild-type bovine PrP. Further, we report here the generation of recombinant mutant prion proteins that are associated with inherited human prion diseases such as fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD). Both mutated variants, the FFI-associated PrP carrying a mutation at amino acid position 178 and the CJD-linked form containing an insertion of nine additional octarepeats reveal proteinase K resistance, one of the typical biochemical properties of the infectious scrapie isoform of the prion protein. By contrast, recombinant wild-type PrP was completely proteinase K sensitive when expressed in SFV-transfected BHK cells. The subcellular location of both PrP mutants at the cell surface and in intracellular compartments of transfected BHK cells was similar to that of wild-type PrP. In order to purify recombinant human and bovine PrP from cell lysates, a FLAG-tag was introduced either at the N-terminus behind the signal peptide or at the C-terminus close to the adhesion site of the GPI anchor. N-terminal insertion did not extensively influence the trafficking of the FLAG-tagged protein to the cell surface, whereas insertion close to the GPI attachment site clearly affected the transport of the majority of PrP to the cell membrane, probably resulting in their retention within the secretory pathway. All FLAG-tagged prion proteins were expressed efficiently in BHK cells and showed a typical glycosylation pattern, allowing their rapid and simple purification via anti-FLAG antibody chromatography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural facets of disease-linked human prion protein mutants: a molecular dynamic study.

Prion propagation in transmissible spongiform encephalopathies involves the conversion of the cellular prion protein, PrPC, into the pathogenic conformer PrPSc. Human familial forms of the disease are linked to specific mutations in the PrP gene, PRNP, and include Gerstmann-Strussler-Scheinker syndrome (GSS), familial Creutzfeldt-Jakob disease (fCJD), and fatal familial insomnia. To gain insigh...

متن کامل

Genetic human prion disease modelled in PrP transgenic Drosophila

Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent....

متن کامل

Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism.

The most common form of prion disease in humans is sCJD (sporadic Creutzfeldt-Jakob disease). The naturally occurring E219K polymorphism in the HuPrP (human prion protein) is considered to protect against sCJD. To gain insight into the structural basis of its protective influence we have determined the NMR structure of recombinant HuPrP (residues 90-231) carrying the E219K polymorphism. The str...

متن کامل

Systematic investigation of predicted effect of nonsynonymous SNPs in human prion protein gene: a molecular modeling and molecular dynamics study.

Nonsynonymous mutations in the human prion protein (HuPrP) gene contribute to the conversion of HuPrP(C) to HuPrP(Sc) and amyloid formation which in turn leads to prion diseases such as familial Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. In order to better understand and predict the role of HuPrP mutations, we developed the following procedure: first, we consulted the...

متن کامل

Pharmacological chaperone for the structured domain of human prion protein.

In prion diseases, the misfolded protein aggregates are derived from cellular prion protein (PrP(C)). Numerous ligands have been reported to bind to human PrP(C) (huPrP), but none to the structured region with the affinity required for a pharmacological chaperone. Using equilibrium dialysis, we screened molecules previously suggested to interact with PrP to discriminate between those which did ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2002